УДК 544.725.2

ИССЛЕДОВАНИЕ СОРБЦИОННОЙ ЕМКОСТИ УЛЬТРАФИЛЬТРАЦИОННЫХ МЕМБРАН В ВОДНОМ РАСТВОРЕ ТРИПОЛИФОСФАТА НАТРИЯ И ТРИНАТРИЙФОСФАТА

© П.А. Чепеняк, О.А. Абоносимов, А.С. Лазарев

Ключевые слова: ультрафильтрация, сорбция, натрий.

В статье приведены экспериментальные данные влияния температуры и концентрации растворов триполифосфата натрия и тринатрийфосфата на концентрацию растворенного вещества в ультрафильтрационных мембранах УФМ-100, УПМ-100 и УАМ-50П. Исследования проведены при изменении концентраций триполифосфата натрия и тринатрийфосфата в исходном растворе от 0,005 до 0,02 кг/м³ и при температурах 22, 30, 38, 46 °C. Установлено изменение концентрации растворенного вещества в мембране при изменении концентрации исходного раствора и температуры.

ВВЕДЕНИЕ

Мембранные технологии приобретают большое значение во многих отраслях промышленности, в т. ч. химической, пищевой, фармацевтической, микробиологической. В последнее время эти методы стали применять для обессоливания и очистки воды, создания водооборота на производстве, что особенно важно для обеспечения экологической безопасности окружающей среды.

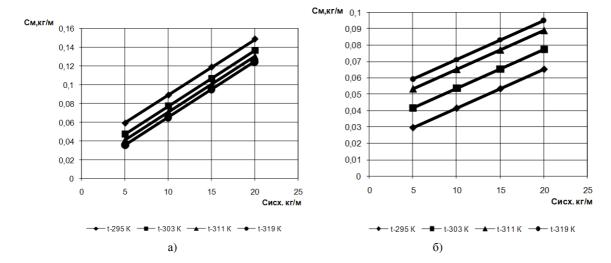
МЕТОДИКА

Измерения сорбции растворенных веществ мембранами проводились на установке, основными элементами которой являлись сушильный шкаф, принадлежности для измерения линейных размеров образцов мембран и стеклянная тара. В качестве стеклянной тары применяли бюксы ($V=50\,$ мл), в которые помещали исследуемые образцы мембран и раствор, и колбы ($V=250\,$ мл) с раствором различной концентрации растворенного вещества.

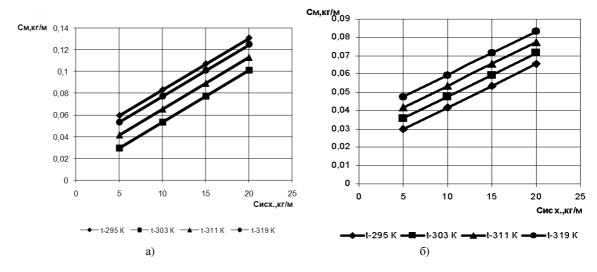
Исследования по сорбции растворенного вещества мембранами проводились по определенной методике [1]. Методика определения сорбционной способности мембран сводилась к следующему. Из листов ультрафильтрационных мембран вырезали образцы размером (14×4) · 10⁻² м. После предварительной подготовки мембран к работе и замера толщины мембраны микрометром мембраны помещали в герметичные бюксы и заливали приготовленными заранее водными триполифосфата натрия и тринатрийфосфата растворами различных концентраций. В случае обнаружения различного рода дефектов: повреждений, сжатия или утолщений мембраны и отклонений размеров образцов мембран - они подлежали замене. Далее бюксы с растворами и образцами мембран помещали в предварительно выведенный на заданный температурный режим термостат. После достижения равновесия (не менее чем через 24 часа при периодической смене раствора), мембраны извлекали из бюкс, снимали пленки раствора с поверхности мембраны фильтровальной бумагой и измеряли ее геометрические размеры: длину, ширину и толщину. Затем образцы мембран помещали в герметичные бюксы с дистиллированной водой для вымывания растворенного вещества из мембран. Через каждые 24 часа воду в бюксах обновляли и при этом старую воду сливали в отведенные для этого колбы. Как правило, четырехкратной смены воды было достаточно для полной десорбции растворенного вещества из мембран.

Далее замеряли объем промывной воды и концентрацию в ней десорбированного вещества из мембраны в каждой колбе по методике, описанной в [2]. Эта методика заключалась в следующем. К промывной воде добавляли 1-2 капли раствора метилового оранжевого и титровали постепенно кислотой до изменения желтой окраски раствора в оранжево-розовую. Коэффициент поправки K приготовленного раствора рассчитывали по формуле:

для 0,1 нормального раствора кислоты


$$K = a / V \cdot 0,0053,$$
 (1)

где a — навеска карбоната натрия, г; V — количество кислоты, израсходованной на титрование, мл; 0.0053 — количество вещества, соответствующее 1 мл точно 0.1 нормального раствора кислоты, г.


Несмотря на то, что принятая методика наиболее проста и доступна, она имеет ряд недостатков, которые не снижают точность экспериментальных данных.

Полученные экспериментальные данные по сорбции вполне могут быть использованы для анализа механизма переноса и расчетов, отдельных массопереносных характеристик мембран.

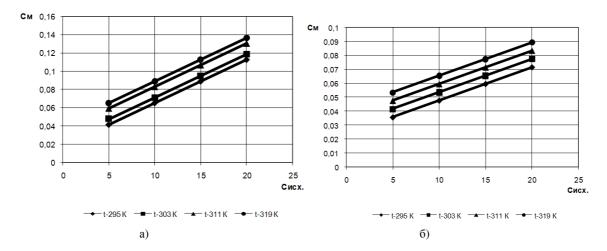

Нами исследовались сорбционные характеристики ультрафильтрационных мембран УФМ-100, УПМ-100 и УАМ-50П по отношению к водным растворам триполифосфата натрия и тринатрийфосфата в зависимости от концентраций и температур раствора. Как отмечается в [3], при сорбции из растворов атомы поверхности адсорбента взаимодействуют с молекулами растворен-

Рис. 1. а) зависимости концентрации растворенного натрия триполифосфата в мембранах УФМ-100 от концентрации исходного раствора и температуры; б) зависимости концентрации растворенного тринатрия фосфата в мембранах УФМ-100 от концентрации исходного раствора и температуры

Рис. 2. а) зависимости концентрации растворенного натрия триполифосфата в мембранах УПМ-100 от концентрации исходного раствора и температуры; б) зависимости концентрации растворенного тринатрия фосфата в мембранах УПМ-100 от концентрации исходного раствора и температуры

Рис. 3. а) зависимости концентрации растворенного натрия триполифосфата в мембранах УАМ-50П от концентрации исходного раствора и температуры; б) зависимости концентрации растворенного тринатрия фосфата в мембранах УАМ-50П от концентрации исходного раствора и температуры

ных веществ и с молекулами растворителя. При этом установлено [3], что чем больше растворимость вещества в воде, тем слабее оно адсорбируется.

На сорбцию веществ из раствора существенно влияет температура процесса. Как известно [3–4], температура на адсорбцию может влиять как положительно, так и отрицательно.

Кроме того, при адсорбции за счет заполнения объема пор сорбированными веществами, их сечение (через которое возможно протекание воды) может существенно снижаться. А наиболее узкие поры могут быть полностью заполнены адсорбированными молекулами и быть недоступными для воды, «блокированы». Все это имеет большое значение для объяснения поведения отдельных кинетических характеристик массопереноса при мембранном разделении.

Для определения коэффициента распределения в ультрафильтрационной мембране и в растворе триполифосфата натрия и тринатрийфосфата необходимы данные по сорбционной емкости мембран.

Коэффициенты распределения рассчитываются по концентрациям растворенного вещества в образцах мембран и в исходных растворах триполифосфата натрия и тринатрийфосфата по следующей зависимости [1]:

$$K_{\rm p} = C_{\rm m} / C_{\rm HCX}, \tag{2}$$

где $\kappa_{\rm p}$ – коэффициент распределения; $C_{\rm m}$ – концентрация растворенного вещества в полимерной мембране, кг/м³; $C_{\rm исx}$ – концентрация растворенного вещества в исходном растворе триполифосфата натрия и тринатрийфосфата, кг/м³.

Концентрацию растворенного вещества в полимерной мембране определяли по следующей зависимости:

$$C_{\rm M} = m_{\rm M} / V_{\rm M}, \tag{3}$$

где $m_{\rm M}$ — масса растворенного вещества в полимерной мембране (определяется экспериментально), кг; $V_{\rm M}$ — объем опытного образца мембраны, м³.

Объем опытного образца мембраны определяли следующим образом:

$$V_{\rm M} = a \cdot b \cdot \delta,\tag{4}$$

где a и b – длинна и ширина опытного образца мембраны, м; δ – толщина образца мембраны, м.

Результаты проведенных исследований приведены на рис. 1 (a, б), рис. 2 (a, б) и рис. 3 (a, б).

На рис. 1–3 приведены зависимости концентрации растворенного вещества в мембранах УФМ-100, УПМ-100 и УАМ-50П от концентрации исходного раствора и температуры.

ВЫВОД

Как видно из графиков, на рис. 1–3 с ростом концентрации исходного раствора триполифосфата натрия и тринатрийфосфата сорбционная способность ультрафильтрационных мембран по триполифосфат натрия и тринатрийфосфат возрастает. Сорбционная способность ультрафильтрационных мембран по триполифосфата натрия и тринатрийфосфата возрастает при росте температуры раствора.

Из экспериментальных данных, приведенных на графиках, следует, что мембрана УФМ-100 обладает большей сорбционной емкостью по сравнению с мембранами УПМ-100 и УАМ-50П, по отношению к водному раствору триполифосфата натрия и тринатрийфосфата.

ЛИТЕРАТУРА

- Хванг С.-Т., Каммермейер К. Мембранные процессы разделения / пер. с англ.; под ред. Ю.И. Дытнерского. М.: Химия, 1981. 464 с.
- Сусленникова В.М., Киселева Е.К. Руководство по приготовлению титрованных растворов. Л.: Химия, 1973. 144 с.
- Когановский А.М., Левченко Т.М., Кириченко В.А. Адсорбция растворенных веществ. К.: Наукова думка, 1977. 223 с.
- Воюцкий С.С. Курс коллоидной химии. Изд. 2-е. М.: Химия, 1976. 512 с.
- Брык М.Т., Цапюк Е.А. Ультрафильтрация. К.: Наукова думка, 1989. 288 с.

Поступила в редакцию 23 сентября 2008 г.

Chepenyak P.A., Abonosimov O.A., Lazarev A.S. Study of sorption capacity of polymeric ultrafiltration membranes in a water solution of sodium tripolyphosphate and trisodium phosphate. The paper presents experimental data of influence of temperature and concentration of solutions of sodium tripolyphosphate and trisodium phosphate on concentration of a dissolved substance in polymeric ultrafiltration membranes UFM-100 and UPM-100. The research is carried out at change of sodium tripolyphosphate and trisodium phosphate concentrations in an initial solution from 0,005 up to 0,02 kg/m³ and at temperatures 22, 30, 38, 46 °C. The change of concentration of the dissolved substance in a membrane is obtained at change of concentration of the initial solution and temperature.

Key words: ultrafiltration, sorption, sodium.

LITERATURE

- Khvang S.-T., Kammermejer K. Membrane processes of division / Translation from English; Edited by Y.I. Dytnersky. M.: Khimiya, 1981.464 p.
- Suslennikova V.M., Kiselyova E.K. Instructions on preparation of titrated solutions. L.: Khimiya, 1973.144 p.
- Koganovsky A.M., Levchenko T.M., Kirichenko V.A. Adsorption of dissolved substances. K.: Naukova Dumka, 1977.223 p.
- Voyutsky S.S. Course of colloidal chemistry. Second edition. M.: Khimiya, 1976. 512 p.
- Bryk M.T., Tsapyuk E.A. Ultrafiltration. K.: Naukova Dumka, 1989. 288 p.